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ROOTm~N'S SCF method [2] is reformulated so that two non-SCF methods are developed 
to solve the eigenequation. The results from these methods can be used as starting eigenfune- 
tions for ROOTHAt~N'S SCF method. 

La m6thode SCF de ROOTtrAA~ [2] est reformul6e en dgveloppant deux m6thodes non-SCF 
pour la solution de l'6quation aux valeurs propres. Les r6sultats de ees deux m6thodes peuvent 
gtre utilisges comme fonctions de d6part pour la m6thode SCF de ROOTrrA A~r. 

Die ,,self-consistent field" Methode yon R o o T ~  [2] wird neu formulierg: dabei werden 
zwei Nicht-SCF Methoden zur LSsung der Eigenwertgleichung entwiekelt. Deren Resultate 
kSnnen als Anfangsfunktionen bei Reclmungen mit der SCF-Methode yon RooT~A~ benutzt 
werden. 

I. Introduction 

I n  a previous  pape r  [1] three  non-SCF methods  were proposed,  which requi red  
opt imiz ing  all  the  molecular  orbit.Ms, the  occupied MO's  C o and  the  v i r t ua l  
unoccupied  MO's  C u. These me thods  all requi red  one or thonormal iza t ion ,  two 
d iagonal iza t ions  and  two sort ing procedures .  

I n  this  paper ,  based  on the  same idea  as [1], g o o t h a a n ' s  SCF m e t h o d  [2] is 
r e fo rmula ted  to  give an Ro- independent  H a m i l t o n i a n  m a t r i x  F K so t h a t  a d i rec t  
non-SCF solut ion is possible.  The  resul t  of  the  presen t  me thods  can be used as the  
in i t ia l  guess for R o o t h a a n ' s  SCF method ,  so t h a t  the  diff icul ty  of  guessing the  
i n p u t  coefficient m a t r i x  can be avoided.  Also, one of  the  new methods  requires  
on ly  one o r thonormal i za t ion  of  the  basis set, one d iagonal iza t ion  of  the  new F K, 
and  one sort ing procedure  for the  eigenvalues and  the i r  corresponding eigenvectors ,  
and  is thus  more  efficient t h a n  the  earl ier  me thods  [1]. However ,  th is  m e t h o d  is 
l imi ted  to  special  eases [3]. 

II. Theory 

The one-electron spa t ia l  molecular  orbi ta ls  ~b in the  LCAO a p p r o x i m a t i o n  can 
be expressed b y  

,~ = ~ C ( l )  

* The title Theoretical Chemistry has been transferred to the Division of Physical Che- 
mistry. 
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where ~9 ~ = (St I 5P~.. .  5fm) is a vector  of  m non-or thogonal  basis a tomic orbitals, 
= (r162 Cm) is a vector  of  m MO's, and 

c =  [co cu]. (2) 

C O is a m X n coefficient mat r ix  corresponding to  the  ~ occupied MO's ~1, r . . . . .  
Cn, and  C u is a m • ( m -  n) coefficient mat r ix  corresponding to  the ( m -  ~) 
vir tual  M 0 ' s  r �9  era. Eq.  (t) can be rewri t ten as 

0 = 9~' A - 1 A  C '  = 5 f '  C '  (la) 

using the or thonormal izat ion process previously described [1] ; the prime designates 
or thonormalized quantities,  and  A is a non-singular mat r ix  [1]. 

The m orbRal energy sum, e, can be expressed as 

e = T r ( R F  a) (3) 
where [1] 

R =  C C* = C ~ C ~162 + C u C u* = R ~ + R u (4) 

F a = U - F  G ( R  ~ (5) 
and 

a~ = E _n~ [2 <~,, I~> - < ~  [ ~>]. 
~,a = 1 

Notice t h a t  C '  is a un i t a ry  matr ix,  hence, 

C' C 't - C 't  C' = am, 
and 

T r ( T  G) = T r ( R  o K )  (6) 

where T and K are two new matrices. [Eqs. (19) and (20) of  [1]]. Thus,  

where 

e = T r ( R H +  C r G C) 

= T r ( R  H + C ' t  ,4r G A C')  

= T r ( R H  + A t G A C' C't) 

= T r ( R H +  T G )  

= T r ( R  H + R ~ K )  

= Tr[(R o § R u) H §  R o K ]  

= Tr (R  ~ F K +  R u H )  

= T r ( C  ~162 F K C ~ -F Tr(C ul" H C u) 

(7) 

F K = H §  K ( T ) .  (8) 

The application of  the var ia t ion method  to  C o, keeping C u constant ,  with C O 

orthonormalized 
C O* S C O = In (9) 

gives 

(~s = Tr[(~C or) F t~ C O § C ~ FK(~C~ = Tr[(~C ~162 F K C ~ -]- (~Co) FK*  Co*] = 0 

(no) 
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and 

(5(C ~ S C ~ -= ((5C ~ S C o -[- Cot S (~C ~ = (de ~ S C ~ -k (~C,o) S*  C ~ = O.  (11) 

Multiplying Eq. (1t) by --e o, a multiplier matrix, and adding it to Eq. (10) gives, 

(Ss' = Tr[((~C ~ ( F  g C ~ - S C ~ ~?o) -F (~ ~_,o) (FK* Co* _ S*  C ~ E~ = 0 . 

The superscripts *, N,  ~ denote the complex conjugate, transpose, and hermitian 
respectively. Hence for any variation of dC ot and d C  o, 

F g C o =. S C  o ~?o (]2) 

and 
F K* C O* = S*  C O* e ~ �9 (13) 

Taking the complex conjugate of Eq. (13) and comparing it with Eq. (t2), gives 

~o* = ~?o 

i.e., e o is hermitian, and thus it follows that  Eqs. (12) and (13) are equivalent. 
Consequently, eigenequation (12) can be solved directly without an iterative 

procedure because F K is a Ro-independent Hamfltolfian, depending only on T, which 
can be obtained by orthonormalizing the basis set before the calculation starts. 

HI. Methods of Calculation 

I t  has been shown that  Roothaan's eigenequation [2] 

Fa  c~ = s c~ e~  (14) 

can be replaced by eigeneq. (t2) ff both the virtual and occupied one electron 
molecular orbitals are considered; in Eq. (14) 

F a = H + G ( R  o) (15) 

and the subscript R signified Roothaan's method. When the eigenvector C o has 
been obtained from Eq. (12), (F K does not represent the true Hamiltonian) the 
true eigenvector and eigenvalue C~ and e~, can be obtained by either of the 
following methods. 

Method  I :  The  Equivalen t  Method  

I t  is assumed that  
c ~  = co (16) 

which is similar to the assumption that,  

c~=c~ 

in Roothaan's method, where C~ is obtained from minimizing the ground state 
energy [Eq. (t4)]. Therefore, 

R ~  = C o C ~ (17) 

e~ = C o+ F a C O (t8) 
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and the ground state energy Ee is 

Ee = 2Tr(R[v H) + Tr[R~ G ( ~ ) ] .  (19) 

Thus, after solving C o from Eq. (i2), R[, is approximated from Eq. (17), from 
which F ~ can be constructed, and then e~ calculated using Eq. (t8). 

Method I I :  The Modification Method 

In  this method the C o obtained from Eq. (i2) is regarded as the first approxima- 
tion to C~,. Then R o and F a are constructed dh~ectly so that  the C~ and e~, can be 
calculated from the eigeneq. (20). 

Fa c~ = s c~ ~ .  (20) 

Here it is assumed tha t  the eigenvector calculated from Eq. (12), if modified to 
satisfy the condition of the minimization of ground state energy, would be the true 
eigenveetor C~. 

The solution of Eq. (20) is equivalent to solving 

where 

and 

Fa' oF= c~'e~ (21) 

F e' = S-V~ F G S-~s (22) 

C~, = S -1/~ C~,' (23) 

where F a' is diagonalized to produce C~,' and e~,, so that  G~, can be calculated 
from Eq. (23). 

Since Eq. (20) is exactly the same as the eigenequation of the SCF method, it 
would be expected that  continuous iteration of Eq. (20) would converge to the 
SCF result. 

The validity of this method is discussed in Section V. 

IV. Illustrative Examples 

In order to compare the results with those in [1], eis- and trans-butadiene are 
again used as examples. The geometry of these compounds was given and the SCF 
calculations were described in [1], so only the results are given for comparison. 

The method is again tested for the NNDO (no neglect of differential overlap) 
and the K N D 0  (K matrix neglect of differential overlap) cases. 

In  the non-SGF calculation, the T and K matrices are the same as defined in 
[1] for both NNDO and K_NDO cases. 

The other quantities in Tabs. l and 2 such as Ee, EN, En, e~, AE,  / etc., all have 
the same meaning as in [1]. MRT stands for the results from the Modification of 
Roothaan's Theory. 
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~0 = ~ det I r ~(~) r f l(2). . .  r - -  ~) ~(2n -- l) Cn(2n) fi(2~) [. (24) 

I f  one of the electrons, r is removed from the molecule, then the wave function 
2T/is  of the form 

1 
2T~-- V ~  det [ r a( l)  r f i(2). . .  r  3) a(2i - 3) 

r - 2) fl(2i 2) r { 
or 

~(2i) } 
r + l) a(2i § i) r + 2) fl(2i + 2 ) . . .  

. . .  r - t) ~(2~ - 1) r ~(2~) 1. (25) 

The ground state energy Be and the orbital energy s~ are then 

Ee = ~ 1To* H 1~  o d~ (26) 
J 

and 
( ,  

s~ = Ee -- J a~* H ~ d~ = C~ F C~ (27) 

where C~ is the ith column of C. I t  is understood that  both the Itartree-Fock- 
l~oothaan method and the non-SCF method arc based on the assumption that  
Eqs. (24) and (25) arc the best approximation to the true wave function, so that  
the problem becomes one of calculating good r I f  all the semi-empirical methods 
and the Hiickel method are regarded as special cases of the t tartree-Fock-Roothaan 
method, then the Hartree-Fock-Roothaan method is the only method so far 
known that  can be used for quantum mechanical molecular calculation of the 
r and all results of quantum mechanical calculations must approximate or 
converge to the Hartree-Fock-l~oothaan result. (Extensions such as the extended 
Hartree-Foek method etc., are not considered). 

In fact, the Hartree-Foek-Roothaan equation which is the condition of ground 
state energy minimization, is only one of the possible equations that  can be used 
to calculate the r Although it  cannot be disputed that  the minimization of the 
ground state energy does produce good r nevertheless any other theoretically 
justifiable methods that  could produce good r as evidenced by agreement with 
experimental results, must also be accepted even ff their results are not the same 
as the Hartree-Fock-Roothaan method. Thus it is important  to note that  the 
criteria of whether the r which are calculated from any method are correct or 
not depends on the comparison of all the physical properties about which infor- 
mation can be obtained from the r and experimental results. The ground state 
energy is only one of these physical properties. 

With this idea hi mind, a non-SCF theory was developed to give good r by 
optimizing all the orbital energies, as shown in Eq. (27), rather than by mini- 
mizing the ground state energy as shown in Eq. (26). From the theoretical back- 
ground it can be expected that  the SCF method will produce a more accurate 
ground state energy, while the non-SCF method will produce more accurate 
orbital energies. From the calculated results it can be seen that  the SCF method 
which removes all the doubly counted electronic repulsions cannot predict the 
orbital energies very well, while the non-SCF method which counts the electronic 
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repulsion twice seems unable to predict the ground state energy as well as the SCF 
method. Therefore, is it possible to effect a compromise between these two ex- 
tremes ? The m o d i / i c a t i o n  method does so : first, the r are calculated by optimizing 
all the orbital energies [Eq. (27)], and then modified so as to satisfy the condition 
of the minimization of ground state energy [Eq. (26)]. (i.e., to satisfy the Hartr.ee- 
Fock equations or Roothaan's eigenequation in the LCAO form). 

I t  could also be expected that  the use of the non-SCF results as the initial 
guess in the SCF method, would result in rapid convergence to the SCF results. 
The iterations do converge to the SCF results, but from our calculations it seems 
that the improvement in efficiency is not so great as expected, because in the first 
iteration the orbital energies suddenly drop considerably, so that  several itera- 
tions are required to adjust it back to the initial value. Nevertheless, it is expected 
that  other cases with larger ttamiltonian matrices will give the increased efficiency 
expected. 

Although one additional diagonalization time can be saved in method I as 
compared to method I I ,  method I suffers because, 

I. /TK has more electronic repulsion terms than F G, which causes a slightly 
higher ground state energy, and 

2. the matrix product C o~ F a C O is only approximately diagonal due to the 
fact t h a t / 7  does not commute with F K, and C O is calculated from iv K. 

Method I I  takes C ~ as the first approximation, so that  the true eigenveetor 
C~, can be obtained from the assumption that  C ~ must also satisfy Roothaan's 
Eq. (t4). This elimhmtes the disadvantages mentioned above and gives nearly the 
same results as the SCF method. The results of the present method lie between 
those of the SCF method and those of the non-SCF methods of [1], but are closer 
to those of SCF method. 
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