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RootaaaN’s SCF method [2] is reformulated so that two non-SCF methods are developed
to solve the eigenequation. The results from these methods can be used as starting eigenfunc-
tions for RoorEAAN’s SCF method.

La méthode SCF de RooTEAAN [2] est reformulée en développant deux méthodes non-SCF
pour la solution de 'équation aux valeurs propres. Les résultats de ces deux méthodes peuvent
tre utilisées comme fonctions de départ pour la méthode SCF de RooTHAAN.

Die ,,self-consistent field* Methode von Roormaax [2] wird neu formuliert: dabei werden
zwel Nicht-SCF Methoden zur Losung der Eigenwertgleichung entwickelt. Deren Resultate
konnen als Anfangsfunktionen bei Rechnungen mit der SCF-Methode von RooTHAAN benutzt
werden.

I. Introduction

In a previous paper [1] three non-SCF methods were proposed, which required
optimizing all the molecular orbitals, the occupied MO’s €C° and the virtual
unoccupied MO’s €%. These methods all required one orthonormalization, two
diagonalizations and two sorting procedures.

In this paper, based on the same idea as [7], Roothaan’s SCF method [2] is
reformulated to give an Ro-independent Hamiltonian matrix FK so that a direct
non-SCF solution is possible. The result of the present methods can be used as the
initial guess for Roothaan’s SCF method, so that the difficulty of guessing the
input coefficient matrix can be avoided. Also, one of the new methods requires
only one orthonormalization of the basis set, one diagonalization of the new FX,
and one sorting procedure for the eigenvalues and their corresponding eigenvectors,
and is thus more efficient than the earlier methods [7]. However, this method is
limited to special cases [3].

1I. Theory

The one-electron spatial molecular orbitals ¢ in the L.CAO approximation can
be expressed by

¢=9C 1)

* The title Theoretical Chemistry has been transferred to the Division of Physical Che-
mistry.
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where &F = (S, Fs. .. P m) is a vector of m non-orthogonal basis atomic orbitals,
@ = (s . . ) is a vector of m MO’s, and

=[CoiC]. (2)

C? is a m X n coefficient matrix corresponding to the % occupied MO’s ¢;, d,,. . .,

¢n, and C% is a m X (m — n) coefficient matrix corresponding to the (m — n)
virtual MO’s dnta,. - ., dm. Eq. (1) can be rewritten as

O=F" A14C =¥ C’ (1a)

using the orthonormalization process previously described [1]; the prime designates
orthonormalized quantities, and 4 is a non-singular matrix [7].
The m orbital energy sum, &, can be expressed as

¢ = Tr(RF6) 3)
where [7]
R=CC'= Qo Cot - Cu Cvt = Ro + Rv (4)
Fé = H -+ G(R?) (3)
and

Gﬂv:z %_1 2 12 (| oAy — {ud | ov)] .

Notice that €’ is a unitary matrix, hence,

cct=ctec =1,,
and
Tr(T G) = Tr(R° K) (6)

where T and K are two new matrices. [Eqgs. (19) and (20) of [1]]. Thus,

=Tr(RH+ C'G C)
~Tr(RH+ C'A4"G AC)
=Tr(RH+ AT G AC' C'Y)
=Tr(RH+ T G) (7)
=Tr(R H+ R° K)
= Tr[(R° + R%) H + R° K]
= Tr(Re FX + R* H)
= Tr(Cot FE C°) + Tr(C¥t H C¥)

where

FE = H+ K(T). (8)

The application of the variation method to C°, keeping C% constant, with C°
orthonormalized
CtsSCo=1, 9
gives

de = Tr[(8Ce") FE Co + Cot FK(3C0)] = Tr[(5C°") FX Co + (3C°) FK* Co*] = 0
(10)
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and
8(Cet § Co) = (0C°t) 8§ Co - Cot § (6C2) = (5C°T) § Co + (65") S*Co*=0. (11)

Multiplying Eq. (11) by —&°, a multiplier matrix, and adding it to Eq. (10) gives,
d¢’ = Tr[(8C°T) (FK Co — 8 Co &%) + (6 C~‘0) (FE* Co* — §* Co* g9)] =0.

The superscripts *,~, T denote the complex conjugate, transpose, and hermitian
respectively. Hence for any variation of §C°t and 6Co,

FECo= S§C g (12)
and
FE# Qo* —. §% Co* go | (13)
Taking the complex conjugate of Eq. (13) and comparing it with Eq. (12), gives
80* = go0

i.e., & is hermitian, and thus it follows that Hqs. (12) and (13) are equivalent.
Consequently, eigenequation (12) can be solved directly without an iterative

procedure because FX is a Re-independent Hamiltonian, depending only on T, which

can be obtained by orthonormalizing the basis set before the calculation starts.

II1. Methods of Calculation
It has been shown that Roothaan’s eigenequation [2]
FG¢ Ch = S C% &% (14)

can be replaced by eigeneq. (12) if both the virtual and occupied one electron
molecular orbitals are considered; in Eq. (14)

F¢ = H + G(R°) (15)

and the subscript R signified Roothaan’s method. When the eigenvector € has
been obtained from Egq. (12), (FX does not represent the true Hamiltonian) the
true eigenvector and eigenvalue C% and &% can be obtained by either of the
following methods.

Method I: The Bquivalent Method
Tt is assumed that
Cy = Co (16)
which is similar to the assumption that,
C% = C%

in Roothaan’s method, where C% is obtained from minimizing the ground state
energy [Eq. (14)]. Therefore,
R4 = Co Cof (17)

& = Co+ F6 Co (18)
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and the ground state energy F, is
E, = 2Tr(Ry H) + Tr{Ry G(R3)] . (19)

Thus, after solving €° from Eq. (12), R} is approximated from Eq. (17), from
which F€ can be constructed, and then &% caleulated using Eq. (18).

Method 11: The Modification Method

In this method the C° obtained from Eq. (12) is regarded as the first approxima-
tion to C%. Then R? and F& are constructed directly so that the C% and &% can be
calculated from the eigeneq. (20).

F6 C3 = SCy &% . (20)

Here it is assumed that the eigenvector calculated from Eq. (12), if modified to
satisfy the condition of the minimization of ground state energy, would be the true
eigenvector C.

The solution of Eq. (20) is equivalent to solving

F¢ C} = Cy' & (21)
where
F¢ = 8- Fé §-' (22)
and
9 = 8§~ Cy’ (23)

where F¢' is diagonalized to produce C%' and &%, so that C§ can be calculated
from Eq. (23).

Since Eq. (20) is exactly the same as the eigenequation of the SCF method, it
would be expected that continuous iteration of Eq. (20) would converge to the
SCF result.

The validity of this method is discussed in Section V.

1V. Illustrative Examples

In order to compare the results with those in [I], cis- and trans-butadiene are
again used as examples. The geometry of these compounds was given and the SCF
calculations were described in [I], so only the results are given for comparison.

The method is again tested for the NNDO (no neglect of differential overlap)
and the KNDO (K matrix neglect of differential overlap) cases.

In the non-SCF calculation, the T and K matrices are the same as defined in
[1] for both NNDO and KNDO cases.

The other quantities in Tabs. 1 and 2 such as ¥,, By, By, &, 4AE, f ete., all have
the same meaning as in [7]. MRT stands for the results from the Modification of
Roothaan’s Theory.
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vV.D
In order to discuss the foundation and significance of the non-SCF theory, it

is necessary to understand the relation between the Slater determinantal wave
function, the Hartree-Fock wave function, and the non-SCF wave function. The

ground state Slater determinantal wave function ¥, of a molecule with 2n elec-

trons (assumed to be a closed shell) can be expressed as
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Wy = V;—Wde‘ﬁ | (1) x(1) $4(2) B(2). . . $u(2n — 1) (2n — 1) $a(2n) B(2m) | . (24)

If one of the electrons, ¢;(k), is removed from the molecule, then the wave function
2, is of the form

_r
V@n-1)1

AV £
=

det [ di (1) (1) $4(2) ﬂ(2) o ia(2 — 3) w(2¢ — 3)
s . on | 2(28)
a2 — 2 p2i = 2) 2 { 550}
$isa(@i + 1) 623 + 1) Gusa(®i + 2) 23+ 2). ..
e $n(@n — 1) 521 — 1) $u(2n) B20) | . (25)

The ground state energy F, and the orbital energy ¢; are then
B, = |3 B, & (26)
and
ei=Ee~j2Wfﬂzwidr= C FG @7

where C; is the ith column of €. It is understood that both the Hartree-Fock-
Roothaan method and the non-SCF method are based on the assumption that
Egs. (24) and (25) are the best approximation to the true wave function, so that
the problem becomes one of calculating good ¢;%s. If all the semi-empirical methods
and the Hiickel method are regarded as special cases of the Hartree-Fock-Roothaan
method, then the Hartree-Fock-Roothaan method is the only method so far
known that can be used for quantum mechanical molecular calculation of the
¢’s, and all results of quantum mechanical calculations must approximate or
converge to the Hartree-Fock-Roothaan result. (Extensions such as the extended
Hartree-Fock method ete., are not considered).

In fact, the Hartree-Fock-Roothaan equation which is the condition of ground
state energy minimization, is only one of the possible equations that can be used
to calculate the ¢;’s. Although it cannot be disputed that the minimization of the
ground state energy does produce good ¢;’s, nevertheless any other theoretically
justifiable methods that could produce good ¢;’s, as evidenced by agreement with
experimental results, must also be accepted even. if their results are not the same
as the Hartree-Fock-Roothaan method. Thus it is important to note that the
criteria of whether the ¢;’s which are calculated from any method are correct or
not depends on the comparison of all the physical properties about which infor-
mation can be obtained from the ¢;’s and experimental results. The ground state
energy is only one of these physical properties.

‘With this idea in mind, a non-SCF theory was developed to give good ¢;’s by
optimizing all the orbital energies, as shown in Eq. (27), rather than by mini-
mizing the ground state energy as shown in Eq. (26). From the theoretical back-
ground it can be expected that the SCF method will produce a more accurate
ground state energy, while the non-SCF method will produce more accurate
orbital energies. From the calculated results it can be seen that the SCF method
which removes all the doubly counted electronic repulsions cannot predict the
orbital energies very well, while the non-SCF method which counts the electronic
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repulsion twice seems unable to predict the ground state energy as well as the SCF
method. Therefore, is it possible to effect a compromise between these two ex-
tremes ? The modification method does so: first, the ¢;’s are calculated by optimizing
all the orbital energies [Eq. (27)], and then modified so as to satisfy the condition
of the minimization of ground state energy [Eq. (26)]. (i.e., to satisfy the Hartree-
Fock equations or Roothaan’s eigenequation in the LCAO form).

It could also be expected that the use of the non-SCK results as the initial
guess in the SCF method, would result in rapid convergence to the SCF results.
The iterations do converge to the SCF results, but from our calculations it seems
that the improvement in efficiency is not so great as expected, because in the first
iteration the orbital energies suddenly drop considerably, so that several itera-
tions are required to adjust it back to the initial value. Nevertheless, it is expected
that other cases with larger Hamiltonian matrices will give the increased efficiency
expected.

Although one additional diagonalization time can be saved in method I as
compared to method I, method I suffers because,

1. FE has more electronic repulsion terms than F¢, which causes a slightly
higher ground state energy, and

2. the matrix product C°' F& C° is only approximately diagonal due to the
fact that F does not commute with FK, and Cv is calculated from FX.

Method IT takes C° as the first approximation, so that the true eigenvector

% can be obtained from the assumption that C° must also satisfy Roothaan’s
Eq. (14). This eliminates the disadvantages mentioned above and gives nearly the
same results as the SCF method. The results of the present method lie between
those of the SCF method and those of the non-SCF methods of [1], but are closer
to those of SCF method.
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